

Inspiring the imagination and seeking new heights

Learning Area / Subject: PHYSICS (PHY301)

Year Level: 13

Curriculum Level: 8

NCEA LEVEL THREE

DE LA SALLE COLLEGE STUDENT HANDBOOK 2022

2 ,						2 La Salle 22 YEAR				со	URSE: LI	EVEL 3	PHY
WEEK	24-Jan	1 31-Jan	2 7-Feb	3 14-Feb	4 21-Feb	5 28-Feb	6 7-Mar	7 14-Mar	8 21-Mar	9 28-Mar	10 4-Apr	11 11-Apr	-
TERM 1	2453011	31-301	ASPI	525 (3.5) De rstanding of M	monstrate	20-100		←	S 91524 (AS	s 3 ,4) nderstanding	5_	,	•
WEEK	1	2	3	4	5	6	7	8	9	10		Easter	-
DATE	2-May	2 9-May	16-May	23-May	30-May	6-Jun	, 13-Jun	o 20-Jun	27-Jun	4-Jul	-		-
RM 2		Physi	standing of t	ted context		AS	591521 (3.1)	Carry out a p	ractical				
MEEK	1	2	cs to a select	ted context	5		vestigation to	test a physic na a non- line 8	s theory relat	10			
TERM	1 25-Jul	Physi	cs to a select	ted context		- Lin	vestigation to to variables in	test a physic na a non- line:	s theory relat ar relationship	10			
MEEK		Physi 2	cs to a select	4 15-Aug AS 91523 (5	6 29-Aug	vestigation to to variables in 7	test a physic na a non- line 8	s theory relat ar relationshi 9	10			
WEEK DATE ©		Physi 2	cs to a select	4 15-Aug AS 91523 (5 22-Aug (AS 3.3) Den	6 29-Aug	vestigation to to variables in 7	test a physic na a non- line 8	s theory relat ar relationshi 9	10 26-Sep Senior Exam			
TERM 3 TERM	25-Jul	2 1-Aug	3 8-Aug	4 15-Aug AS 91523 (understandi	5 22-Aug (AS 3.3) Den ing of Waves	6 29-Aug nonstrate s system	vestigation to o variables it 7 5-Sep	test a physic na a non- linea 8 12-Sep	s theory relat ar relationshi 9	10 26-Sep Senior Exam Week	EXTERNAL		

De	La	Sal	le	Col	lege
				~ ~ .	

Mon. 22 Nov 2021

PHY301 Assessment Statement 2022

Course is endorsable

Course : Physics Mr A Kumar Total Credits : 20 Year:13

Year 13 Physics course is an extension to Year 12 Physics. The students develop in-depth knowledge and skills in Mechanics, Waves and Modern Physics. The practical internal assessment allows students to test a Physics theory with uncertainties and report on it. Students also explore an application of Physics ideas in different context. Throughout the course the emphasis is on problem solving using mathematical skills and laws of Physics which requires a high order thinking and excellent analytical skills.

Pre Requisites

Minimum 12 Level 2 Physics Credits.

Additional Requirements Student workbook cost \$25

A scientific calculator

N	o Standard Number	Version	Level	Credits	Lit / Num	Full Title	Method of Assessment	Assessment Opportunities Offered	Approximate Date	Grade	Teacher Signature
1	91521	2	3	4	Ll Lit	Physics 3.1 - Carry out a practical investigation to test a physics theory relating two variables in a non-linear relationship	Practical	1	Week 4 Term 4		
2	91522	2	3	3	Ll Lit	Physics 3.2 - Demonstrate understanding of the application of physics to a selected context	Written Report	1	Week 4 Term 2		
3	91525	2	3	3	Ll Lit	Physics 3.5 - Demonstrate understanding of Modern Physics	Exam	1	Term 1, Week 8		
4	91524	2	3	6	Ll Lit	Physics 3.4 - Demonstrate understanding of mechanical systems	Exam	External	Term 4		
4	91523	2	3	4	L1 Lit	Physics 3.3 - Demonstrate understanding of wave systems	Exam	External	Term 4		

School Assessment Procedures - You can view your rights and obligations in the school's assessment procedures in the Student Assessment Handbook

Record your internal grades and ask your teacher to sign it off as correct. You can then use this as evidence of your achievement.

Page 1

Science

2022 Course Outline – Y13 Physics (PHY 301)

Subject: Physics NCEA Level: Three

Entry Requirements: a minimum of 12 credits from NCEA Level Two Physics

Number of credits gained: 20 (+ 6 optional)

Method of assessment:

- Both internal and external assessment
- Internal assessments are given after a series of mock practice runs
- Mock externals at the end of each unit of work
- Practical Test: Summative or Formative practical tests.
- Mid Year Examinations
- Preliminary Examinations

Looking Ahead:

- Tertiary level study
- A diverse range of careers stem from Physics –
 e.g. Teacher, Meteorology, Pharmacy, Electrical, Electronic, Engineering, Lab Technician, Medicine,

Course Description

Course aims:

This course is aimed at those students who have achieved well in Year 12 and who know that they wish to pursue a career that requires Physics. Such careers include engineering, Electronics, Electrical, Meteorology and much more.

The course consists of Achievement Standards from the Level 3 Physics course.

Course learning outcomes:

- To be able to carry out a practical physics investigation with guidance, that lead to a mathematical relationship.
- To be able to describe and explain momentum conservation, centre of mass and circular motion use formulae to calculate quantities associated with above.
- To be able to describe and explain rotational motion and conservation of angular momentum and use formulae to calculate quantities associated with above.
- To be able to describe and explain simple harmonic motion and resonance and use formulae to calculate quantities associated with SHM and Resonance.
- To be able to describe and explain wave phenomena including Doppler effect, interference and standing waves and use formulae to calculate quantities associated with them.
- To be able to describe and explain effects of internal resistance, Kirchhoff's laws and capacitors and use formulae to calculate quantities associated with them.
- To be able to describe and explain effects of magnetic fields and electromagnetic induction and use formulae to calculate quantities associated with these two concepts.
- To be able to describe and explain effects associated with AC circuits, including LCR circuits and use formulae to calculate quantities associated with these two concepts.

2022 Course Assessment Statement – Y13 Physics (PHY301)

HOW WILL I BE ASSESSED IN THIS SUBJECT?

Achievement Standard	Curriculum Level	Level and Credit Value	Internal or External Assessment	Brief Description	My grades for Prelims	My final grades for Internals
91521 AS 3.1 Carry out a practical investigation to test a physics theory relating two variables in a non- linear relationship.	8	Level 3 4 credits	1	Plan an investigation, collect and process data, determine a relationship, process uncertainties		
91522 AS 3.2 Demonstrate understanding of the application of physics to a selected context	8	Level 3 3 Credits	1	Research a context which uses Physics principles and concepts.		
91523 AS 3.3 Demonstrate understanding of wave systems	8	Level 3 4 credits	E	Wave interference, diffraction grating, Doppler effect, standing waves		
91524 AS 3.4 Demonstrate understanding of mechanical systems	8	Level 3 6 credits	E	Centre of mass, 2-D momentum, circular motion two forces, Rotational motion, simple harmonic motion, reference circle and phasors		
91526 AS 3.6 Demonstrate understanding of electrical systems	8	Level 3 6 credits	E	Internal resistance, Kirchhoff's laws, capacitors, magnetic flux, induction, Faraday and Lenz's laws, Inductors, Transformer, AC circuits and resonance circuits		

Note: Depending on class ability. Extra internal assessments might be added if required and if the challenge and time is warranted.

Subject: 13 Physics	Teacher in charge: Mr. Ajinesh Kumar	Year Level: 13

Curriculum Levels: 8

Unit Title: AS91521 (AS3.1 Physics Internal) – Carry out a practical investigation to test a physics theory relating two variables in a non-linear relationship.	Unit Title: AS91522 (AS3.2 Physics Internal) – Demonstrate understanding of the application of physics to a selected context.	Unit Title: AS91523 (AS3.3Physics External) – Demonstrate understanding of wave systems Achievement objectives:
 Achievement objectives: Carry out a practical physics investigation that requires the graphical identification and mathematical analysis of a relationship that is non-linear Learning outcomes/skills: To be able to carry out the correct procedures to gather, process and analyse data, and interpret the results. Assessment tasks/method: Data relevant to aim of investigation collected Linear graph from data drawn Results and findings critically discussed 	 Achievement objectives: Use physics ideas to explain a technological, biological, or astronomical application of physics and discuss related issues. Learning outcomes/skills: Identifies a range of physical concepts relevant to an application. Explains how physics concepts are used in an application. Considers broader aspects of an application, such as advantages and disadvantages, and developmental effects on/by society. 	 Investigate physical phenomena in the areas of light and waves and produce qualitative and quantitative explanations for a variety of complex situations. Analyse and evaluate data to deduce complex trends and relationships in physical phenomena. Learning outcomes/skills: Demonstrate understanding of waves in the following strands: interference (quantitative) of electromagnetic and sound waves, including multi-slit interference and diffraction gratings; standing waves in strings and pipes; harmonics and overtones; resonance; beats; Doppler Effect (stationary observer) Assessment tasks/method: Mid Year Mock Examinations (Term 2).
 Key competencies: Thinking, Managing self, Using language, symbols, and texts. Values: Innovation, inquiry and curiosity, thinking, excellence Approximate time required: 6 weeks 	 Assessment tasks/method Students a written report after conducting a research. Key competencies: Thinking, Managing self, Using language, symbols, and texts. Values: Innovation, inquiry and curiosity, thinking, excellence Approximate time required: 4 weeks 	 Preliminary Mock Examinations (Term 3). External NCEA examination at year's end. Key competencies: Thinking, Managing self, Using language, symbols, and texts, Participating and contributing. Values: Inquiry and curiosity, excellence, respect. Approximate time required: 8 weeks

Unit Title: AS91524 (AS 3.4 Physics External) – Demonstrate understanding of mechanical systems	Unit Title: AS91526 (AS3.6 Physics External) – Demonstrate understanding of electrical systems
Achievement objectives:	Achievement objectives:
 Investigate physical phenomena in the areas of mechanics and produce qualitative and quantitative explanations for a variety of complex situations. Analyse and evaluate data to deduce complex trends and relationships in physical phenomena. 	 Investigate physical phenomena in the areas of electricity and electromagnetism produce qualitative and quantitative explanations for a variety of complex situations. Analyse and evaluate data to deduce complex trends and relationships in physical phenomena.
Learning outcomes/skills:	Learning outcomes/skills:
 Show understanding of Translational Motion: Centre of mass (1 and 2 dimensions); conservation of momentum and impulse (2D) Develop knowledge of principles of Circular and Rotational Motion(for example Velocity and acceleration, banked corners, vertical circles; Newton's Law of gravitation, satellite motion. Understand the principles of Rotational motion eg. angular speed and with constant angular acc; torque; rotational inertia; angular momentum; rot Ek; conservation of angular momentum and energy. Show understanding of simple harmonic motion 	 Show understanding of complex DC Circuits using Kirchhoffs laws. Investigate Capacitance (Internal resistance; parallel plate capacitor; capacitance; dielectrics; series and parallel capacitors; charge/discharge voltage/time and current/time graphs for a capacitor; time constant; energy stored in a capacitor. Show understanding of Electromagnetic Induction and AC Circuits. For example Magnetic flux; magnetic flux density; Faraday's Law; Lenz's Law; inductor,LCR circuits. Assessment tasks/method:
	Mid Year Mock Examinations (Term 2).
 Assessment tasks/method: Mid Year Mock Examinations (Term 2). 	Preliminary Mock Examinations (Term 3).
Preliminary Mock Examinations (Term 3).	External NCEA examination at year's end.
• External NCEA examination at year's end.	
Key competencies: Thinking, Managing self, Using language, symbols, and texts, Participating and contributing.	Key competencies: Thinking, Managing self, Using language, symbols, and texts, Participating and contributing.
Values: Inquiry and curiosity, excellence.	Values: Inquiry and curiosity, excellence, innovation.
Approximate time required: 8 weeks	Approximate time required: 9 weeks

Number	AS91521	Version	2	Page 1 of 2
		Achieveme	nt Standard	
Subject Re	eference	Physics 3.1		
Title			ractical investigation to tes ariables in a non-linear rel	
Level	3	Credits	4 Assessmer	nt Internal
Subfield	Science			
Domain	Physics			
Status		Registered	Status date	4 December 2012
Planned re	eview date	31 December 2020	Date version published	17 November 2016

This achievement standard involves carrying out a practical investigation to test a physics theory relating two variables in a non-linear relationship.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Carry out a practical	 Carry out an in-depth	 Carry out a comprehensive
investigation to test a	practical investigation to	practical investigation to test
physics theory relating	test a physics theory	a physics theory relating two
two variables in a non-	relating two variables in a	variables in a non-linear
linear relationship.	non-linear relationship.	relationship.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Physical inquiry and physics concepts in the Physical World strand and Investigating in science in the Nature of Science strand; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

- 2 Carry out a practical investigation involves:
 - collecting data relevant to the aim based on the manipulation of the independent variable over a reasonable range and number of values
 - · determining appropriate uncertainties in raw data
 - using graphical analysis, including a consideration of uncertainties, from which the equation of the relationship/value of the physics quantity can be determined

Number	AS91521	Version	2	Page 2 of
		s determined from		of the relationship/value of the and includes a comparison with
Cai	rry out an in-depth	practical investig	ation involve	es:
•	describing the con	trol of other varia	able(s) that c	ould significantly affect the results
•	using techniques t	o improve the ac	curacy of me	easurements
	determining uncer analysis	tainties in one of	the variable	s expressed in the graphical
	graphical analysis with the uncertaint		the uncerta	inty in the relationship consistent
		ationship/quantity	obtained fro	e comparison between the physics om the experimental data which

Carry out a comprehensive practical investigation involves a discussion which addresses issues critical to the practical investigation, such as:

- the other variable(s) that could have changed and significantly affected the results, and how they could have changed the results
- the limitations to the theory's applicability both in the practical situation and/or at extreme values of the independent variable
- any unexpected outcomes of the processing of the results and a suggestion of how they could have been caused and the effect they had on the validity of the conclusion.
- 3 A *practical investigation* is an activity that includes gathering, processing and interpreting data.
- 4 The variables under investigation should have a non-linear relationship according to a physics theory provided in the task.
- 5 Conditions of Assessment related to this achievement standard can be found at www.tki.org.nz/e/community/ncea/conditions-assessment.php.

Replacement Information

This achievement standard replaced unit standard 6395 and AS90774.

Quality Assurance

- Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against achievement standards.
- 2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

Consent and Moderation Requirements (CMR) reference 0233

Number	AS91522	Version	2	Page 1 of 2
		Achieveme	nt Standard	
Subject Re	eference	Physics 3.2		
Title		Demonstrate selected con	e understanding of the appli text	cation of physics to a
Level	3	Credits	3 Assessmen	t Internal
Subfield	Science			
Domain	Physics			
Status		Registered	Status date	4 December 2012
Planned re	eview date	31 December 2020	Date version published	17 November 2016

This achievement standard involves demonstrating understanding of the application of physics to a selected context.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	 Demonstrate in-depth	 Demonstrate comprehensive
understanding of the	understanding of the	understanding of the
application of physics to	application of physics to a	application of physics to a
a selected context.	selected context.	selected context.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Using physics in the Physical World strand, and Communicating in science in the Nature of Science strand; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 Demonstrate understanding involves relating the key physics ideas to the selected context.

Demonstrate in-depth understanding involves explaining how or why the key physics ideas relate to the selected context.

Demonstrate comprehensive understanding involves linking key physics ideas together to provide a coherent picture of the physics relevant to the selected context.

Nu	mber	AS91522	Version	2	Page 2 of 2				
3	The <i>selected context</i> involves physics ideas at curriculum Level 8. The context may be technological, biological, or astronomical.								
4	It is expected that the physics knowledge required for this standard will be different from that required for AS91527 (Physics 3.7).								
5	Conditions of Assessment related to this achievement standard can be found at www.tki.org.nz/e/community/ncea/conditions-assessment.php.								
		ent Information	replaced unit st	andard 6392 a	nd unit standard 6394.				
Qu	ality As	surance							
1	Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against								

2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

achievement standards.

Consent and Moderation Requirements (CMR) reference 0233

.55

Number	AS91523	Version	2	Page 1 of 2
		Achieveme	ent Standard	
Subject R	eference	Physics 3.3		
Title		Demonstrate	e understanding of wave sy	stems
Level	3	Credits	4 Assessmer	t External
Subfield	Science			
Domain	Physics			
Status		Registered	Status date	4 December 2012
Planned review date		31 December 2020	Date version published	17 November 2016

This achievement standard involves demonstrating understanding of wave systems.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	Demonstrate in-depth	 Demonstrate comprehensive
understanding of wave	understanding of wave	understanding of wave
systems.	systems.	systems.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Physical inquiry and physics concepts in the Physical World strand and Communicating in science in the Nature of Science strand, and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation.

Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation.

Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

Number	AS91523	Version	2	Page 2 of 2

- 3 Wave systems include mathematical solutions and/or written descriptions. Written descriptions may include graphs or diagrams.
- 4 Assessment is limited to a selection from the following:

Interference (quantitative) of electromagnetic and sound waves, including multi-slit interference and diffraction gratings; standing waves in strings and pipes; harmonics; resonance; beats; Doppler Effect (stationary observer for mechanical waves).

Relationships: $d \sin \theta = n\lambda$ $n\lambda = \frac{dx}{L}$ $f' = f \frac{v_w}{v_w \pm v_s}$

5 Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at <u>http://www.nzqa.govt.nz/qualificationsstandards/qualifications/ncea/subjects/.</u>

Replacement Information

This achievement standard replaced unit standard 6391 and AS90520.

Quality Assurance

- Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against achievement standards.
- 2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

Consent and Moderation Requirements (CMR) reference 0233

Number	AS91524	Version	2	Page 1 of 3
		Achievem	ent Standa	ard
e el ofield main tus nned r		Credits Registered 31 December 2020	6 Status da Date vers	ion published 17 November 2016
evement standard involves demonstrating understanding of mechani	ard involves demonstrating understanding of mechani	strating understanding of mechani	rstanding of mechani	cal systems.
nent		Achievement	with Merit	Achievement with Excellence
strate tanding nical sy		Demonstrate understandin mechanical	ng of	 Demonstrate comprehensive understanding of mechanical systems.
or	y Notes			
in	a, Ministry of ry and physics ce in the Nati	Education, 2007, Le s concepts in the Phy	vel 8. The si ysical World d, and is rela	w Zealand Curriculum, Learning tandard is aligned to Physical strand and Communicating in ted to the material in the <i>Teaching</i> ion, 2010 at
p:/	//seniorsecond	lary.tki.org.nz.		
lara	autanga o Aote		objectives to	o Aotearoa. For details of Te which this standard relates, see
en m	nomena, conce nonstrate in-de	epts, or principles rel	late to a give	g explanations for phenomena,

Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

Replacement Information This achievement standard replaced unit standard 6397 and AS90521.

Number	AS91525	Version	2		Page 1 of 2	
		Achieven	nent Star	ndard		
Subject R	eference	Physics 3.5	5			
Title		Demonstra	te understa	anding of Modern Phys	sics	
Level	3	Credits	3	Assessment	Internal	
Subfield	Science					
Domain	Physics					

Status	Registered	Status date	4 December 2012
Planned review date	31 December 2020	Date version published	17 November 2016

This achievement standard involves demonstrating understanding of Modern Physics.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	 Demonstrate in-depth	 Demonstrate comprehensive
understanding of Modern	understanding of Modern	understanding of Modern
Physics.	Physics.	Physics.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Physical inquiry and physics concepts in the Physical World strand and Communicating in science in the Nature of Science strand, and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation.

Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation.

Demonstrate comprehensive understanding involves demonstrating understanding of connections between concepts or principles that relate to a given situation.

Number	AS91525	Version	2	Page 2 of 2
 the district of the district of the district of the distribution of the distr	e Bohr model of iscrete atomic en insation; atomic l ne photoelectric e vave-particle duali ualitative descript	the hydrogen atd ergy levels; elect ine spectra, the ffect ty ion of the effects energy and mass nt of special and	m: the photon; tron transition b electron volt s of the strong in s deficit; conser general relativi	Iodern Physics include: the quantisation of energy; etween energy levels; nteraction and Coulombic rvation of mass-energy for ity

4 Conditions of Assessment related to this achievement standard can be found at www.tki.org.nz/e/community/ncea/conditions-assessment.php.

Replacement Information

This achievement standard replaced unit standard 6396 and AS90522.

Quality Assurance

- Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against achievement standards.
- 2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

Consent and Moderation Requirements (CMR) reference 0233

Number	AS91526	1
--------	---------	---

Version 2 Page 1 of 3

Achievement Standard

Subject Reference		Physics 3.6				
Title		Demonstrate	understandi	ng of electrical	systems	
Level	3	Credits	6	Assessment	External	
Subfield	Science					
Domain	Physics					
Status		Registered	Status date	e	4 December 2012	
Planned review date		31 December 2020	Date version	on published	17 November 2016	

This achievement standard involves demonstrating understanding of electrical systems.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	 Demonstrate in-depth	Demonstrate comprehensive
understanding of	understanding of	understanding of electrical
electrical systems.	electrical systems.	systems.

Explanatory Notes

1 This achievement standard is derived from The New Zealand Curriculum, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Physical inquiry and physics concepts in the Physical World strand and Communicating in science in the Nature of Science strand, and is related to the material in the Teaching and Learning Guide for Physics, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the Papa Whakaako for the relevant learning area.

2 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation.

Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation.

Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

Nur	nber	AS91526	Version	2		Page 2 of 3		
3	3 Electrical systems include mathematical solutions and/or written descriptions. Written descriptions may include graphs or diagrams.							
4	Assessment is limited to a selection from the following:							
	1000010	tors in DC Circuits al resistance; sim		of Kirchhoff's I	_aws.			
	Capacitors in DC Circuits Parallel plate capacitor; capacitance; dielectrics; series and parallel capacitors; charge/time, voltage/time and current/time graphs for a capacitor; time constant; energy stored in a capacitor.							
N v A T a p ir	Magn voltag	Inductors in DC Circuits Magnetic flux; magnetic flux density; Faraday's Law; Lenz's Law; the inductor; voltage/time and current/time graphs for an inductor; time constant; self inductance; energy stored in an inductor; the transformer.						
	AC Circuits The comparison of the energy dissipation in a resistor carrying direct current and alternating current; peak and rms voltage and current; voltage and current and their phase relationship in LR and CR series circuits; phasor diagrams; reactance and impedance and their frequency dependence in a series circuit; resonance in LCR circuits.							
	Relati	onships:						
	$E = \frac{1}{2}$	QV $Q = C$	V C =	$\frac{\varepsilon_o \varepsilon_r A}{d}$	$C_T = C_1 + C_2 + \mathbf{K}$	$\tau = RC$		

$$\begin{split} \phi &= BA \qquad \varepsilon = -L \frac{\Delta I}{\Delta t} \qquad \varepsilon = -\frac{\Delta \phi}{\Delta t} \\ \frac{N_{\rho}}{N_{s}} &= \frac{V_{\rho}}{V_{s}} \qquad E = \frac{1}{2}L I^{2} \qquad \tau = \frac{L}{R} \end{split}$$

 $\omega = 2\pi f$

 $V = V_{MAX} \sin \omega t$ $I_{MAX} = \sqrt{2} I_{me}$

 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

 $X_{l} = \omega L$

 $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \mathbf{K}$

 $I = I_{MAX} \sin \omega t$

 $V_{\rm MAX} = \sqrt{2} V_{\rm ms}$

5 Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at http://www.nzga.govt.nz/gualificationsstandards/gualifications/ncea/subjects/.

 $X_c = \frac{1}{\omega C}$

V = IZ

2022 PHY301 – Student Guide to Bibliographies / Referencing

A bibliography is the 'trail' of reading that you did to inform your thinking for your essay or assignment. A bibliography is organised alphabetically by the author's last name.

Setting up a bibliography APA style:

ltem	Reference list entries	In text citation	
Book one author	Pilger, J. (2006). Freedom next time. London, England: Bantam.	(Pilger, 2006) or Pilger (2006).	
Book two authors			
Book three - five authors	handbook New York NY: St Martin's Press		
Book six - seven authors	ix - seven Walters B. P. (2005). Human relations development: A manual		
Website html no date	tml from http://www.mang.canterbury.ac.nz/writing_guide		
Website PDF			
Video online			

De La Salle College Assessment Result Appeal Form

Name:	Class:
Name/number of standard being appealed:	
Subject:	Teacher who marked work:
Grade awarded for standard:	
Date work returned to student:	Date of appeal:
Reason for appeal:	
Student signature:	Caregiver's signature:
OFFICE USE ONLY	
Teacher response:	
HOF response:	
Principal's Nominee response:	
Final decision:	

_

	De La Salle College 2022
	Absence From Internal Assessment
	Application for Extension
Student:	Class:
Subject:	Teacher:
Assessment title:	
Standard number:	
Type of assessment a	activity (test, practical, assignment etc).
Date of assessment of	or due date:
Reason for applicati	on:
Illness or injur	y: <i>medical certificate or a letter from parent / caregiver</i> must be attached.
Family / perso	nal trauma: documentation must be attached <i>(eg. a letter from parent / caregiver</i> Dean).
School activity	(sporting or cultural)
Decision by Principal' Extension grad New assessm	ner-in-charge of the activity:
	as been explained to me and I accept the decision.